A generalized Grubbs-Beck test statistic for detecting multiple potentially influential low outliers in flood series
نویسندگان
چکیده
منابع مشابه
A Bayesian Approach for Detecting Outliers in ARMA Time Series
The presence of outliers in time series can seriously affect the model specification and parameter estimation. To avoid these adverse effects, it is essential to detect these outliers and remove them from time series. By the Bayesian statistical theory, this article proposes a method for simultaneously detecting the additive outlier (AO) and innovative outlier (IO) in an autoregressive moving-a...
متن کاملDetecting Spatial Outliers with Multiple Attributes
A spatial outlier is a spatially referenced object whose non-spatial attribute values are significantly different from the values of its neighborhood. Identification of spatial outliers can lead to the discovery of unexpected, interesting, and useful spatial patterns for further analysis. Previous work in spatial outlier detection focuses on detecting spatial outliers with a single attribute. I...
متن کاملa time-series analysis of the demand for life insurance in iran
با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند
Firework Plots for Evaluating the Impact of Outliers and Influential Observations in Generalized Linear Models
Outliers can distort many measures in data analysis and statistical modeling, and influential points can have disproportionate impact on the estimated values of model parameters. Jang and Anderson-Cook (2013) proposed a new set of graphical summaries, called firework plots, as simple tools for evaluating the impact of outliers and influential points in regression. Variations of the plots focus ...
متن کاملDetecting and Revamping of X-Outliers in Time Series Database
Dataset with Outliers causes poor accuracy in future analysis of data mining tasks. To improve the performance of mining task, it is necessary to detect and revamp of outliers which are there in the dataset. Existing techniques like ARMA (Auto-Regressive Moving Average), ARIMA (AutoRegressive Integrated Moving Average) and Multivariate Linear Gaussian state space model don't consider the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Water Resources Research
سال: 2013
ISSN: 0043-1397
DOI: 10.1002/wrcr.20392